山田 裕貴

助教 山田 裕貴

 

 

学歴

2002年 3月 福島県立安積高等学校卒業
2006年 3月 京都大学工学部工業化学科卒業
2008年 3月 京都大学大学院工学研究科物質エネルギー化学専攻修士課程修了
2010年 9月 京都大学大学院工学研究科物質エネルギー化学専攻博士後期課程修了

職歴

2010年10月~ 東京大学大学院工学系研究科化学システム工学専攻 助教
2012年 9月~ 京都大学触媒・電池元素戦略研究拠点 拠点助教(兼任)

査読付論文

Researcher ID

Google Scholar

Researchmap

 

  1. “Superconcentrated electrolytes to create new interfacial chemistry in non-aqueous and aqueous rechargeable batteries”
    Yuki Yamada, Atsuo Yamada
    Chem. Lett., in press. [Invited Review Paper]
  2. “Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions”
    Masaki Okoshi, Yuki Yamada, Shinichi Komaba, Atsuo Yamada, Hiromi Nakai
    J. Electrochem. Soc., 164, A54-A60 (2017).
  3. “Hydrate-melt electrolytes for high-energy-density aqueous batteries”
    Yuki Yamada, Kenji Usui, Keitaro Sodeyama, Seongjae Ko, Yoshitaka Tateyama, Atsuo Yamada
    Nature Energy, 1, Article number: 16129 (2016).
  4. “Superconcentrated electrolytes for a high-voltage lithium-ion battery”
    Jianhui Wang, Yuki Yamada (co-first author), Keitaro Sodeyama, Ching Hua Chiang, Yoshitaka Tateyama, Atsuo Yamada 
    Nature Commun., 7, Article number: 12032 (2016).
  5. “Review—Superconcentrated Electrolytes for Lithium Batteries”
    Yuki Yamada
    , Atsuo Yamada
    J. Electrochem. Soc., 162, A2406-A2423 (2015). [Invited Review Paper]
  6. “Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes”
    Yuki Yamada
    , Ching Hua Chiang, Keitaro Sodeyama, Jianhui Wang, Yoshitaka Tateyama, Atsuo Yamada
    ChemElectroChem, 2, 1687-1694 (2015). [selected as Very Important Paper (VIP)][featured on Front Cover; 2, 1627 (2015)]
  7. “Important factors for effective use of carbon nanotube matrices in electrochemical capacitor hybrid electrodes without binding additives”
    Ricardo Quintero, Dong Young Kim, Kei Hasegawa, Yuki Yamada, Atsuo Yamada, Suguru Noda
    RCS Adv., 5, 16101-16111 (2015).
  8. “A new sealed lithium-peroxide battery with a Co-doped Li2O cathode in a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte”
    Shin-ichi Okuoka, Yoshiyuki Ogasawara, Yosuke Suga, Mitsuhiro Hibino, Tetsuichi Kudo, Hironobu Ono, Koji Yonehara, Yasutaka Sumida, Yuki Yamada, Atsuo Yamada, Masaharu Oshima, Eita Tochigi, Naoya Shibata, Yuichi Ikuhara, Noritaka Mizuno
    Sci. Rep., 4, 5684 (2014).
  9. “Sacrificial anion reduction mechanism for electrochemical stability improvement in highly concentrated Li-salt electrolyte”
    Keitaro Sodeyama, Yuki Yamada, Koharu Aikawa, Atsuo Yamada, Yoshitaka Tateyama
    J. Phys. Chem. C, 118, 14091-14097 (2014).
  10. “General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes”
    Yuki Yamada
    , Kenji Usui, Ching Hua Chiang, Keisuke Kikuchi, Keizo Furukawa, Atsuo Yamada
    ACS Appl. Mater. Interfaces, 6, 10892-10899 (2014).
  11. “Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries”
    Yuki Yamada
    , Keizo Furukawa, Keitaro Sodeyama, Keisuke Kikuchi, Makoto Yaegashi, Yoshitaka Tateyama, Atsuo Yamada
    J. Am. Chem. Soc., 136, 5039-5046 (2014).
  12. “Carbon nanotubes 3D current collectors for lightweight, high performance and low cost supercapacitor electrodes”
    Ricardo Quintero, Dong Young Kim, Kei Hasegawa, Yuki Yamada, Atsuo Yamada, Suguru Noda
    RSC Adv., 4, 8230-8237 (2014).
  13. “A superconcentrated ether electrolyte for fast-charging Li-ion batteries”
    Yuki Yamada
    , Makoto Yaegashi, Takeshi Abe, Atsuo Yamada
    Chem. Commun., 49, 11194-11196 (2013).
  14. “Theoretical Study on De-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents”
    Masaki Okoshi, Yuki Yamada, Atsuo Yamada, Hiromi Nakai
    J. Electrochem. Soc., 160, A2160-A2165 (2013).
  15. “Na2FeP2O7: A Safe Cathode for Rechargeable Sodium-ion Batteries”
    Prabeer Barpanda, Guandong Liu, Chris D. Ling, Mao Tamaru, Maxim Avdeev, Sai-Cheong Chung, Yuki Yamada, Atsuo Yamada
    Chem. Mater., 25, 3480-3487 (2013).
  16. “Unveiling the Origin of Unusual Pseudocapacitance of RuO2nH2O from Its Hierarchical Nanostructure by Small-Angle X-ray Scattering”
    Noboru Yoshida, Yuki Yamada, Shin-ichi Nishimura, Yojiro Oba, Masato Ohnuma, Atsuo Yamada
    J. Phys. Chem. C, 117, 12003-12009 (2013).
  17. “Demonstration of Co3+/Co2+ Electrochemical Activity in LiCoBO3 Cathode at 4.0 V”
    Yasunobu Yamashita, Prabeer Barpanda, Yuki Yamada, Atsuo Yamada
    ECS Electrochem. Lett., 2, A75-A77 (2013).
  18. “High-Throughput Solution Combustion Synthesis of High-Capacity LiFeBO3 Cathode”
    Prabeer Barpanda, Yasunobu Yamashita, Yuki Yamada, Atsuo Yamada
    J. Electrochem. Soc., 160, A3095-A3099 (2013).
  19. “Enhanced Cycling Performance of Li-O2 batteries by the Optimized Electrolyte Concentration of LiTFSA in Glymes”
    Fujun Li, Tao Zhang, Yuki Yamada, Atsuo Yamada, Haoshen Zhou
    Adv. Energy Mater., 3, 532-538 (2013).
  20. “Carbon Supported TiN Nanoparticles: An Efficient Bifunctional Catalyst for Non-Aqueous Li-O2 batteries”
    Fujun Li, Ryohji Ohnishi, Yuki Yamada, Jun Kubota, Kazunari Domen, Atsuo Yamada, Haoshen Zhou
    Chem. Commun., 49, 1175-1177 (2013).
  21. “Observation of the highest Mn3+/Mn2+ redox potential of 4.45 V in a Li2MnP2O7 pyrophosphate cathode”
    Mao Tamaru, Prabeer Barpanda, Yuki Yamada, Shin-ichi Nishimura, Atsuo Yamada
    J. Mater. Chem., 22, 24526-24529 (2012).
  22. “Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries”
    Prabeer Barpanda, Tian Ye, Shin-ichi Nishimura, Sai-Cheong Chung, Yuki Yamada, Masashi Okubo, Haoshen Zhou, Atsuo Yamada
    Electrochem. Commun., 24, 116-119 (2012).
  23. “Electrochemical characterization of single-layer MnO2 nanosheets as a high-capacitance pseudocapacitor electrode”
    Kazuya Kai, Yoji Kobayashi, Yuki Yamada, Kohei Miyazaki, Takeshi Abe, Yoshiharu Uchimoto, Hiroshi Kageyama
    J. Mater. Chem., 22, 14691-14695 (2012).
  24. “Eco-efficient splash combustion synthesis of nanoscale pyrophosphate (Li2FeP2O7) positive-electrode using Fe(III) precursors”
    Prabeer Barpanda, Tian Ye, Sai-Cheong Chung, Yuki Yamada, Shin-ichi Nishimura, Atsuo Yamada
    J. Mater. Chem., 22, 13455-13459 (2012).
  25. “Polymorphs of LiFeSO4F as cathode materials for lithium ion batteries – a first principle computational study”
    Sai-Cheong Chung, Prabeer Barpanda, Shin-ichi Nishimura, Yuki Yamada, Atsuo Yamada
    Phys. Chem. Chem. Phys., 14, 8678-8682 (2012).
  26. “Challenges Toward Higher Temperature Operation of LiFePO4″
    Tomochika Kurita, Jiechen Lu, Makoto Yaegashi, Yuki Yamada, Shin-ichi Nishimura, Tsutomu Tanaka, Takuya Uzumaki, Atsuo Yamada
    J. Power Sources, 214, 166-170 (2012).
  27. “Kinetics of Nucleation and Growth in Two-Phase Electrochemical Reaction of LixFePO4″
    Gosuke Oyama, Yuki Yamada, Ryuichi Natsui, Shin-ichi Nishimura, Atsuo Yamada
    J. Phys. Chem. C, 116 (13), 7306-7311 (2012).
  28. “Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries”,
    Seung Woo Lee, Betar M. Gallant, Youngmin Lee, Noboru Yoshida, Dong Young Kim, Yuki Yamada, Suguru Noda, Atsuo Yamada and Yang Shao-Horn
    Energy Environ. Sci., 5, 5437-5444 (2012).
  29. “Facile Preparation of Monolithic LiFePO4/Carbon Composites with Well-Defined Macropores for a Lithium-Ion Battery”
    George Hasegawa, Yuya Ishihara, Kazuyoshi Kanamori, Kohei Miyazaki, Yuki Yamada, Kazuki Nakanishi, Takeshi Abe
    Chem. Mater., 23 (23), 5208–5216 (2011).
  30. “Role of Edge Orientation in Kinetics of Electrochemical Intercalation of Lithium-Ion at Graphite”
    Yuki Yamada
    , Kohei Miyazaki, and Takeshi Abe
    Langmuir, 26 (18), 14990-14994 (2010).
  31. “Electrochemical Lithium Intercalation into Graphite in Dimethyl-Sulfoxide-Based Electrolytes: Effect of Solvation Structure of Lithium-Ion”
    Yuki Yamada
    , Yasuyuki Takazawa, Kohei Miyazaki, and Takeshi Abe
    J. Phys. Chem. C, 114 (26), 11680-11685 (2010).
  32. “Kinetics of Electrochemical Insertion and Extraction of Lithium Ion at SiO”
    Yuki Yamada
    , Yasutoshi Iriyama, Takeshi Abe, and Zempachi Ogumi
    J. Electrochem. Soc., 157 (1), A26-A30 (2010). [Highlighted in Interface]
  33. “Kinetics of Lithium-Ion Transfer at the Interface between Li35La0.55TiO3 and Binary Electrolytes”
    Yuki Yamada
    , Fumihiro Sagane, Yasutoshi Iriyama, Takeshi Abe, and Zempachi Ogumi
    J. Phys. Chem. C, 113 (32), 14528-14532 (2009).
  34. “Correlation between Charge-Discharge Behavior of Graphite and Solvation Structure of the Lithium Ion in Propylene Carbonate-Containing Electrolytes”
    Yuki Yamada
    , Yasuhiro Koyama, Takeshi Abe, and Zempachi Ogumi
    J. Phys. Chem. C, 113 (20), 8948-8953 (2009).
  35. “Kinetics of Lithium Ion Transfer at the Interface between Graphite and Liquid Electrolytes: Effects of Solvent and Surface Film”
    Yuki Yamada
    , Yasutoshi Iriyama, Takeshi Abe, and Zempachi Ogumi
    Langmuir, 25 (21), 12766-12770 (2009).

国際会議Proceedings

  1. “Revisiting the lithium iron borate (LiFeBO3) cathode system: Synthetic and electrochemical findings”
    Prabeer Barpanda, Yasunobu Yamashita, Sai-Cheong Chung, Yuki Yamada, Shin-ichi Nishimura, Atsuo Yamada
    ECS Trans., 50 (24), 21-26 (2013).
  2. “Splash combustion synthesis and exploration of alkali metal pyrophosphate (A2MP2O7; A = Li, Na) cathodes”
    Prabeer Barpanda, Tian Ye, Jiechen Lu, Yuki Yamada, Sai-Cheong Chung, Shin-ichi Nishimura, Masashi Okubo, Haoshen Zhou, Atsuo Yamada
    ECS Trans., 50 (24), 71-77 (2013).

総説・解説等

  1. “水を用いた安全・安価・高性能な新型リチウムイオン電池”
    山田裕貴、山田淳夫
    自動車技術, 71, 106-107 (2017).
  2. “高濃度電解液を用いた革新的リチウムイオン電池の可能性”
    山田裕貴、袖山慶太郎、館山佳尚、山田淳夫
    電池技術, 28, 14-25 (2016).
  3. “高濃度電解液の特異性に基づく二次電池革新の可能性”
    山田裕貴
    、山田淳夫
    Electrochemistry, 82, 1085-1090 (2014).
  4. “ナトリウムイオン電池への期待と可能性”
    山田淳夫、大久保将史、山田裕貴、Sai-Cheong Chung、西村真一、Prabeer Barpanda
    電池技術, 26, 105-111, (2014).
  5. “PC系電解液中での黒鉛の電気化学特性”
    安部武志、山田裕貴、小久見善八
    電池技術, 22, 65-71 (2010).

外部競争的資金(代表者のみ)

  1. 2015年6月, 村田学術財団2015年度研究助成, 「濃厚電解液を用いた高性能ナトリウムイオン電池」.
  2. 2014年4月~2018年3月, 科研費若手研究(A),「有機溶液の結晶化ギャップにおける異常物性」.
  3. 2012年10月~2015年3月, JST-ALCA(蓄電デバイス領域), 「メタルフリー空気電池の創製」(2015年4月からはALCA-SPRINGにて実施).
  4. 2011年5月~2014年3月, 科研費若手研究(B), 「濃厚リチウム塩含有有機電解液の電気化学的異常性」. 

    その他共同研究実績2件 

受賞

  1. 2017年7月, 第16回 GSC賞 奨励賞, 「ハイドレートメルト電解液の開発と高電圧水系二次電池への応用」
  2. 2017年3月, 電気化学会進歩賞・佐野賞, 「高濃度電解液の新機能開拓と蓄電池応用」.
  3. 2015年6月, 第4回新化学技術研究奨励賞, 「高濃度電解液の特異性を利用した革新的蓄電池の創製」.
  4. 2009年3月, 電気化学会第76回大会ポスター賞, 「プロピレンカーボネート電解液中における黒鉛の電気化学特性」.