Selected Works

  1. “Liquid Madelung energy accounts for the huge potential shift in electrochemical systems”, Nature Communications, 15, 1319 (2024).
  2. “Electrolyte design for lithium-ion batteries with a cobalt-free cathode and silicon oxide anode”, Nature Sustainability, 6, 1705–1714 (2023).
  3. “Electrolyte science, what’s next?”, Next Energy, 100014 (2023).
  4. “Electrode potential influences the reversibility of lithium-metal anodes”, Nat. Energy https://doi.org/10.1038/s41560-022-01144-0 (2022).
    [a free view-only version is here]
  5. “Anhydrous Fast Proton Transport Boosted by the Hydrogen Bond Network in a Dense Oxide-Ion Array of α-MoO3″, Adv. Mater., 34(34), 2203335 (2022).
  6. “Kinetic square scheme in oxygen-redox battery electrodes”, Energy Environ. Sci., 15, 2591-2600 (2022).
  7. “Frontiers in Theoretical Analysis of Solid Electrolyte Interphase Formation Mechanism”Adv. Mater., ​33(37), 2100574 (2021).[Invited Review]
  8. “An overlooked issue for high-voltage Li-ion batteries: Suppressing the intercalation of anions into conductive carbon”, Joule, 5(4), 998-1009 (2021).
  9. “Nonpolarizing oxygen-redox capacity without O-O dimerization in Na2Mn3O7″, Nature Comm., 12, 631 (2021).
  10. “Mechanism of Sodium Storage in Hard Carbon: An X‐Ray Scattering Analysis”, Adv. Energy Mater., 10(3), 1903176 (2020).
  11. “Multiorbital bond formation for stable oxygen-redox reaction in battery electrodes”, Energy Environ. Sci., 13, 1492 (2020).
  12. “A cyclic phosphate-based battery electrolyte for high voltage and safe operation”, Nature Energy, 5, 291 (2020).
  13. “Coulombic self-ordering upon charging a large-capacity layered cathode material for rechargeable batteries”, Nature Commun., 10, 2185 (2019).
  14. “Reversible Sodium Metal Electrodes: Is Fluorine an Essential Interphasial Component?”, Angew. Chem. Int. Ed., 58, 8024 (2019).
  15. “Redox-Driven Spin Transition in a Layered Battery Cathode Material”, Chem. Mater., 31, 2358 (2019).
  16. “Advances and issues in developing salt-concentrated battery electrolytes”, Nature Energy, 4, 269 (2019).
  17. “Negative dielectric constant of water confined in nanosheets”, Nature Comm., 10, 850 (2019).
  18. “Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na4/7-x[□1/7Mn6/7]O2 (□: Mn Vacancy)”, Adv. Energy Mater., 1800409 (2018).
  19. “Fire-extinguishing organic electrolytes for safe batteries”, Nature Energy, 3, 22 (2018).
  20. “Charge Storage Mechanism of RuO2/Water Interfaces”, J. Phys. Chem. C, 121, 18975 (2017).
  21. “Hydrate-melt electrolytes for high-energy-density aqueous batteries”, Nature Energy, 1, 16129 (2016).
  22. “Superconcentrated electrolytes for a high-voltage lithium-ion battery”, Nature Comm., 7, 12032 (2016).
  23. “Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode”, Nature Comm., 7, 11397 (2016).
  24. “Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors”, Nature Comm., 6, 6544 (2015).
  25. “Superstructure in the Metastable Intermediate-Phase Li2/3FePO4 Accelerating the Lithium Battery Cathode Reaction”, Angew. Chem. Int. Ed., 54, 8939 –8942 (2015).
  26. “A 3.8-V earth-abundant sodium battery electrode”, Nature Comm., 5, 4358 (2014). [Ross Coffin Purdy Award of the American Ceramic Society]
  27. “Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries”, J. Am. Chem. Soc., 136, 5039-5046 (2014).
  28. “Unveiling the Origin of Unusual Pseudocapacitance of RuO2・nH2O from Its Hierarchical Nanostructure by Small-Angle X-ray Scattering”, J. Phys. Chem. C, 117, 12003-12009 (2013).
  29. “Electrochromism of LixFePO4 Induced by Intervalence Charge Transfer Transition”, J. Phys. Chem. C, 116, 15259-15264 (2012).
  30. “Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries”, Energy Environ. Sci., 5, 5437-5444 (2012). [Ranked No.1 in most read article in EES]
  31. “New Lithium Iron Pyrophosphate as 3.5 V Class Cathode Material for Lithium Ion Battery”, J. Am. Chem. Soc., 132, 13596-13597 (2010).
  32. “Lithium Iron Borates as High Capacity Battery Electrodes”, Adv. Mater., 22, 3583-3587 (2010).
  33. “Isolation of Solid-Solution Phases in Size-Controlled LixFePO4 at Room-Temperature”, Adv. Funct. Mater., 18, 395-403 (2009). [Spriggs Phase Equilibria Award of the American Ceramic Society]
  34. “Structure of Li2FeSiO4″, J. Am. Chem. Soc., 130, 13212-13213 (2008).
  35. “Experimental Visualization of Lithium Diffusion in LixFePO4″, Nature Mater., 7, 707-711 (2008). [Awarded the most influential output of the NEDO industrial technology research grant in Japan]
  36. “Ruddlesden-Popper-type Epitaxial Film as Oxygen Electrode for Solid-Oxide Fuel Cells”, Adv. Mater., 20, pp. 4124-4128 (2008).
  37. “Room-Temperature Miscibility Gap in LixFePO4″, Nature Mater., 5, 357-360 (2006).
  38. “Electrochemical, Magnetic, and Structural Investigations on the Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 Phases”,  Chem. Mater., 18, 804-813 (2006).
  39. “Reversible Hydrogen Decomposition in KAlH4″, J. Alloys and Comp., 353, 310-314 (2003).
  40. “Optimized LiFePO4 for Lithium Battery Cathodes”, J. Electrochem. Soc., 148, A224-229 (2001).
  41. “Keggin-Type Heteropolyacids as Electrode Material for Electrochemical Supercapacitors”, J. Electrochem. Soc., 145, 737-743 (1998).
  42. “Jahn-Teller Structural Phase Transition Around 280K in LiMn2O4”, Mater. Res. Bull., 30, 715-721 (1995).