Selected Works

  1. “Hydrate-melt electrolytes for high-energy-density aqueous batteries”, Nature Energy, 1, 16129 (2016).
  2. “Superconcentrated electrolytes for a high-voltage lithium-ion battery”, Nature Comm., 7, 12032 (2016).
  3. “Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode”, Nature Comm., 7, 11397 (2016).
  4. “Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors”, Nature Comm., 6, 6544 (2015).
  5. “Superstructure in the Metastable Intermediate-Phase Li2/3FePO4 Accelerating the Lithium Battery Cathode Reaction”, Angew. Chem. Int. Ed., 54, 8939 –8942 (2015).
  6. “A 3.8-V earth-abundant sodium battery electrode”, Nature Comm., 5, 4358 (2014). [Ross Coffin Purdy Award of the American Ceramic Society]
  7. “Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries”, J. Am. Chem. Soc., 136, 5039-5046 (2014).
  8. “Unveiling the Origin of Unusual Pseudocapacitance of RuO2・nH2O from Its Hierarchical Nanostructure by Small-Angle X-ray Scattering”, J. Phys. Chem. C, 117, 12003-12009 (2013).
  9. “Electrochromism of LixFePO4 Induced by Intervalence Charge Transfer Transition”, J. Phys. Chem. C, 116, 15259-15264 (2012).
  10. “Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries”, Energy Environ. Sci., 5, 5437-5444 (2012). [Ranked No.1 in most read article in EES]
  11. “New Lithium Iron Pyrophosphate as 3.5 V Class Cathode Material for Lithium Ion Battery”, J. Am. Chem. Soc., 132, 13596-13597 (2010).
  12. “Lithium Iron Borates as High Capacity Battery Electrodes”, Adv. Mater., 22, 3583-3587 (2010).
  13. “Isolation of Solid-Solution Phases in Size-Controlled LixFePO4 at Room-Temperature”, Adv. Funct. Mater., 18, 395-403 (2009). [Spriggs Phase Equilibria Award of the American Ceramic Society]
  14. “Structure of Li2FeSiO4″, J. Am. Chem. Soc., 130, 13212-13213 (2008).
  15. “Experimental Visualization of Lithium Diffusion in LixFePO4″, Nature Mater., 7, 707-711 (2008). [Awarded the most influential output of the NEDO industrial technology research grant in Japan]
  16. “Ruddlesden-Popper-type Epitaxial Film as Oxygen Electrode for Solid-Oxide Fuel Cells”, Adv. Mater., 20, pp. 4124-4128 (2008).
  17. “Room-Temperature Miscibility Gap in LixFePO4″, Nature Mater., 5, 357-360 (2006).
  18. “Electrochemical, Magnetic, and Structural Investigations on the Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 Phases”,  Chem. Mater., 18, 804-813 (2006).
  19. “Reversible Hydrogen Decomposition in KAlH4″, J. Alloys and Comp., 353, 310-314 (2003).
  20. “Optimized LiFePO4 for Lithium Battery Cathodes”, J. Electrochem. Soc., 148, A224-229 (2001).
  21. “Keggin-Type Heteropolyacids as Electrode Material for Electrochemical Supercapacitors”, J. Electrochem. Soc., 145, 737-743 (1998).
  22. “Jahn-Teller Structural Phase Transition Around 280K in LiMn2O4”, Mater. Res. Bull., 30, 715-721 (1995).